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1 Introduction

There is a substantial empirical literature investigating both of the two distinct versions of what
is called the forward exchange unbiasedness hypothesis, according to which forward exchange rates
represent unbiased forecasts of future spot exchange rates. The basic procedure is to regress the
spot rate (or its …rst di¤erence) on the lagged future rate (or the lagged forward premium). [In fact,
usually the analysis is carried out in terms of logarithms of the exchange rates]. The two approaches to
formulating the unbiasedness hypothesis are complementary and have di¤erent interpretations.1 The
levels regression is a cointegrating one in which the long-run relationship between spot and forward
rates is being characterized. The regression of …rst di¤erences on lagged premia is a conventional
stationary regression and characterizes the short-run dynamics in the foreign exchange market. Both
formulations have received considerable attention from empirical researchers.

Regardless of how the unbiasedness hypothesis is posed, it is often the case that we will have

data on several currencies and will wish to test the unbiasedness hypothesis for all of them. This
implies the estimation of a number of equations equal to the number of currencies for which we have
data. Several investigators have recognized the fact that it may be quite bene…cial to estimate these
equations together in a system, rather than estimating each one separately. The reasoning is that the
integration of world …nancial markets, as well as the fact that most exchange rates are measured in
terms of a common currency, viz., the U.S. dollar, both imply that the disturbances to the equations
for the di¤erent countries will be correlated, so that systems estimation using Zellner’s (1962) feasible
GLS estimator for seemingly unrelated regressions (SUR) should produce more e¢cient estimates
and more precise tests than would the equation-by-equation application of OLS.

The importance of e¢cient estimation has been well-recognized by empirical researchers in this
…eld. In testing the levels formulation of the unbiasedness hypothesis, the studies that have estimated
an SUR system of cointegrating regressions include Bailey, Baillie, and McMahon (1984), Barnhart
and Szakmary (1991), and Evans and Lewis (1995). In the stationary …rst di¤erences formulation,
SUR techniques have been employed by, for example, Bilson (1981), Fama (1984), Cornell (1989),
and Barnhart and Szakmary (1991). In related multi-country analyses of forward exchange pricing,
Levine (1989 and 1991) has employed three-stage least squares, taking advantage of the correlation
across currencies in the context of a simultaneous equations model. Many of these authors …nd
signi…cant changes in their results when the correlation across currencies is accounted for. Although

1The relationship between the two approaches is discussed in detail by Hakkio and Rush (1989) and Barnhart and
Szakmary (1991).
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non-normality is a pervasive characteristic of exchange rate data, only Bilson (1981) among the
authors listed above attempts to gauge its a¤ects on his results. He …nds quite signi…cant e¤ects.

In taking account of the e¢ciency gains obtainable through the exploitation of the correlation
structure of the errors, few researchers have recognized that signi…cant additional e¢ciency gains are
possible by exploiting the thick tails and multivariate non-normality of these errors’ density func-
tions2 . We overcome this shortcoming in the existing empirical literature by adaptively estimating

multivariate forward unbiasedness models. To do so, we make use of the adaptive estimator of sta-
tionary SUR models under elliptical symmetry developed by Hodgson, Linton, and Vorkink (2002)
to test the …rst di¤erences version of the hypothesis. In addition, to test the levels version of the
hypothesis, the present paper extends the analysis of Hodgson, Linton, and Vorkink (2002) to allow
for cointegrating regressions. We also implement a test of elliptical symmetry due to Beran (1979).

The adaptive estimators applied in this paper allow for an error density of unknown form. To
overcome the curse of dimensionality, we focus on the restriction that the multivariate density is
elliptically symmetric.3 Elliptical symmetry is important for a number of reasons. First, it allows
for leptokurtic marginals and hence is more consistent with commonly observed data distributions.
Second, Chamberlain (1983) showed that a necessary and su¢cient condition for mean-variance
utility functions, and hence two parameter fund separation, is that the return distribution be ellip-
tically symmetric. Similar semiparametric models have been explored previously in Bickel (1982),
Jeganathan (1995) and Hodgson (1998). These authors de…ned adaptive estimators of the identi-
…able parameters in various regression models. However, their proposed estimates do not exploit
the dimensionality reduction implied by elliptical symmetry and consequently su¤er serious “small
sample” costs. What is required here is estimation of a multidimensional density function and its
…rst derivative. See Silverman (1986, page 94) for a dramatic illustration of the e¤ects of dimen-
sionality on estimating a normal density at the origin. Although the semiparametric theory says
that asymptotically these e¤ects disappear when the properties of the parameter estimates are being
considered, in even quite large samples they do not.

In Section 2, we introduce the two versions of the unbiasedness hypothesis and the corresponding
cointegrated and non-cointegrated SUR econometric models, along with a general modeling strategy
that nests the two models. In Section 3, we provide a formula for computing the adaptive estimator
developed by Hodgson, Linton, and Vorkink (2002) for stationary models and describe the extension

2The e¤ects of thick tails in univariate tests of forward exchange market unbiasedness have been investigated by,

for example, Steigerwald (1992), Phillips, McFarland, and McMahon (1996), and Hodgson (1998a, 1999).
3See also Fernández, Osiewalski, and Steel (1995) for some interesting generalizations of elliptical symmetry.
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of this estimator to cointegrated models. Section 4 discusses issues involved in applying Beran’s
(1979) test for elliptical symmetry, as well as the issue of bandwidth selection in our model, and
Section 5 reports the results of our exchange rate analysis. We use kAk =

¡
trATA

¢1/2 to denote the
Euclidean norm of a vector or matrix A, while P! denotes convergence in probability and ) signi…es
weak convergence of probability measures. We say that X » MN (0, V ) when X is mixed normal
with (possibly) random covariance matrix V.

2 Econometric Models

In this section, we introduce the basic regression models through which the two versions of the forward
unbiasedness hypothesis are generally implemented. We will …rst consider the stationary version of
the hypothesis and associated econometric model, followed by a discussion of the cointegrated version
of the hypothesis with the associated econometric model. We will then proceed to formulate a general
econometric model which incorporates the two hypotheses within a uni…ed econometric framework.

Suppose we observe a sequence of (logged) spot exchange rates fsi
tg , t = 1, . . . , n+1, i = 1, . . . ,m

and (logged) one-period ahead forward exchange rates ff i
tg , t = 1, . . . , n, i = 1, . . . ,m. In this

formulation, si
t is the log spot exchange rate between the currency of country i and some control

currency, such as the U.S. dollar. Suppose we have data for m di¤erent currencies, indexed by i, and
for each currency we have observations for n consecutive time periods, indexed by t. The forward
rate f i

t is the log of the price paid in period t for the delivery of a unit of currency i in period t +1.
For instance, if we have a sequence of monthly data, then f i

t would denote the one-month forward
rate prevailing at period t. More speci…c details about the data actually used in our empirical study
are provided in Section 6.

What we have referred to as the stationary version of the unbiasedness hypothesis states that the
forward exchange premium f i

t ¡ si
t provides an unbiased forecast of the change in the exchange rate

over the upcoming time period, i.e. that

Et
£
si

t+1 ¡ si
t
¤
= f i

t ¡ si
t,

where Et is the conditional expectation formed on the basis of all information available as of time
period t. This hypothesis can be tested empirically using estimates of the following set of m regression

equations:

si
t+1 ¡ si

t = αi + βi(f i
t ¡ si

t) + ui,t+1 ; t = 1, . . . , n, i = 1, . . . ,m. (1)
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Within this framework, the unbiasedness hypothesis can be stated as follows:

H0 : αi = 0, βi = 1, i = 1, . . . ,m (1a)

versus the general alternative. Under the null, the forward rate provides an unbiased prediction
of future spot rates and the market is informationally e¢cient. This hypothesis has been tested
many times before; see Engel (1996) for a review. Our test is multivariate as we estimate the above
regression equations as a seemingly unrelated regression taking account of the comovement (across
i) that we expect to …nd in ui,t+1.

The levels, or cointegrated, version of the hypothesis enquires as to whether or not the current
forward rate is an unbiased predictor of the next period’s spot rate, which we can write as follows:

Et
£
si
t+1

¤
= f i

t .

The corresponding regressions we estimate are of the following form:

si
t+1 = αi + βif i

t + ui,t+1. (2)

We are then interested in testing the hypothesis

H0 : αi = 0, βi = 1, i = 1, . . . ,m (3)

versus the general alternative.
In both formulations of the hypothesis, we have a system of m regression equations to be esti-

mated. Standard single-equation estimation methods such as ordinary least squares (OLS) can be
used to estimate the parameters of the model and form valid asymptotically chi-squared Wald test
statistics for both versions of the hypothesis. However, as discussed in the introduction, the single-
equation approach can entail a substantial loss in estimation e¢ciency and testing power relative
to an estimation strategy such as generalized least squares (GLS) which estimates all m equations
jointly as a seemingly unrelated regressions (SUR) system. We claim that further e¢ciency gains
may be obtainable by accounting for the possible presence of non-normality in the disturbances to
the SUR system.

The two regression models described above can be nested within a more general framework of
multivariate regressions. Consider the m-equation seemingly unrelated regression model

yt = α+ xtβ + ut := wtθ + ut, t = 1, . . . , n, (4)
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where yt 2 Rm, α 2 Rm,

xt =

2
666664

xT
1t 0

xT
2t

. . .

0 xT
mt

3
777775

, β =

2
664

β1
...

βm

3
775 , ut =

0
BB@

u1t
...

umt

1
CCA ,

wt = [Im xt] , xT
it 2 Rki and βi 2 Rki for every i = 1, . . . ,m, the full parameter vector is θ =£

αT , βT ¤T 2 Rm+k, where k = k1 + ¢ ¢ ¢ + km, and ut 2 Rm are i.i.d., mean zero innovations with
E(utuT

t ) = §u and with density p(u). Here, the regressors xt may be either integrated of order one
(I(1)) or stationary and ergodic. In either case, we assume that xt and ut are independent. When
the regressors are I(1), each of the m regressions is cointegrating and the framework is suitable for
the analysis of the second form of the unbiasedness hypothesis stated above. When the regressors
are stationary, the regressions are standard and are suitable for the analysis of the …rst version of
the unbiasedness hypothesis.

We consider two di¤erent assumptions about p. Firstly, that p is unrestricted. Secondly, we
restrict p to be elliptically symmetric.

Definition. An m-dimensional density function p(u) is elliptically symmetric if it can be written
in the form (det§)¡1/2 g(uT§¡1u) for some scalar density generating function g(¢) and matrix §.

The practical content of the elliptical symmetry restriction arises from the fact that the function g
has only a scalar argument.

Assuming that p were known, the log-likelihood for the data would be

Ln(θ) =
nX

t=1

ln p(yt ¡ wtθ),

and estimation of θ proceeds by maximizing Ln(θ). We de…ne the weighting matrix δn, where δn =
n¡1/2Im+k if xt are stationary and δn = diag

£
n¡1/2Im, n¡1Ik

¤
if xt are integrated. These structures

for δn are associated with the fact that the rate of consistency of estimators in non-cointegrated
models is n1/2, whereas in cointegrating regressions it is n1/2 for intercept parameters and n for slope
parameters. One estimation strategy here is to use a two-step Newton-Raphson estimator θ starting
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from a preliminary δ¡1n -consistent estimator bθ, obtained from the Gaussian likelihood. Under general
conditions, this will be …rst order asymptotically equivalent to the MLE, i.e.,

δ¡1n (θ ¡ θ0) ) MN(0, I¡1), (4)

where the asymptotic information matrix I is such that δn (∂2Ln (θ0) /∂θ∂θ0) δn ) I. In order to
derive an expression for I, we de…ne ϕ(u) = ∂p(u)/∂u

p(u) , the m-dimensional score vector of p, and
p =

R
ϕ(u)ϕ(u)Tp(u)du, the information matrix of p. For the stationary model, the asymptotic

information matrix is

I =

"
p E [pxt]

E
£
xT

t p
¤

E
£
xT

t pxt
¤

#
,

while for the cointegrated model, it is

I =

"
p p

R 1
0 M (r)dr

R 1
0 M (r)Tdrp

R 1
0 M (r)TpM (r)dr

#
,

where

M (r) =

2
666664

MT
1 (r) 0

MT
2 (r)

. . .

0 MT
m(r)

3
777775

and Mi(r) is a ki-dimensional Brownian motion with covariance matrix equal to the long run co-
variance matrix of ¢xit, for every i = 1, . . . ,m. Note that in the case of cointegration, I is random,
hence the mixed normal limit theory.

The estimation strategy employed in the present paper follows Hodgson, Linton, and Vorkink
(2002) in that we also use a Newton-Raphson iterative approach to estimation but must replace the
unknown density p by a nonparametric estimator; thus our adaptive estimator eθ will have the form

eθ = bθ + δnbI¡1n (bθ)b¢n(bθ), (5)

where b¢n and bIn are estimates of the …rst and second standardized derivatives of Ln respectively.
Their computation is described in Section 3 below. In particular,

b¢n(bθ) = ¡δn

nX

t=1

w0
tbϕt(but),
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where bϕt(but) is a consistent estimator of the m-dimensional score vector ϕ(ut), while but = yt ¡ wt
bθ.

The standard approach to this problem is to use multivariate kernel estimates bp and bp0 to construct bϕ,
with some observations possibly being trimmed, see Bickel (1982). Unfortunately, if m is large such
estimates will have poor performance due to the curse of dimensionality, see Härdle and Linton (1994).
We follow Hodgson, Linton, and Vorkink (2002) in using a construction of bϕt(.) that takes advantage
of our elliptical symmetry assumption and employs only one-dimensional smoothing operations.4 We

should note that Hodgson, Linton, and Vorkink (2002) only consider estimation of the stationary
SUR model, with the extension of the estimator to cointegrating regressions in the present paper
being new.

3 Estimation

Our argument in the preceding section implies that the …nite sample performance of an adaptive
estimator can be signi…cantly improved if, in computing a nonparametric score estimator bϕ, we use
a direct kernel estimate of the density of the univariate random variable v = uT§¡1u to indirectly

estimate the density of the m-vector u, rather than directly estimating the latter with a multivariate
kernel. The adaptive estimator described below does indeed use such an indirect approach to esti-
mating p0/p, but does so at two removes rather than one. In other words, our estimate of the density
of v is itself an indirect estimate, derived from a kernel estimate of the univariate density of the
transformed random variable z = τ (v), where τ (¢) is some transformation. Of course, the identity is
a valid transformation, so that direct estimation of the density of v is allowed by our theory; however,
certain other transformations may yield estimators with better …nite sample performance. Hodgson,
Linton, and Vorkink (2002) consider a general class of transformations given by τ(v; ζ) =

¡
vζ ¡ 1

¢
/ζ,

where selection of the parameter ζ is left to the discretion of the investigator and is discussed by
Hodgson, Linton, and Vorkink (2002).

Before introducing our estimator, we must introduce some preliminary notation. Recall that

p(u) = (det §)¡1/2g(uT§¡1u)

for some function g and matrix §. Note that in this formulation, the magnitude of the matrix § is
left indeterminate, as multiplying it by a constant can be accommodated by changing the de…nition

4As shown in Stute and Werner (1991) these procedures ensure density estimators whose pointwise rate of conver-

gence is the one-dimensional rate.
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of g (¢) to absorb the constant. This matrix is determined up to multiplication by a scalar, however,
and will generally be proportional to the covariance matrix §u = E

£
uuT

¤
and to the inverse of the

information matrix p = E
£
ϕ(u)ϕ(u)T

¤
. Following Hodgson, Linton, and Vorkink (2002), we tie

down the value of § by de…ning it such that det (§) = 1. Note that we do this without any loss of
generality. It follows that §u = c§, where c = (det §u)1/m, i.e., § = §u/(det §u)1/m. To simplify our
analysis we de…ne the spherically symmetric m-dimensional random variable ε = §¡1/2u, which is

just the standardized innovation vector. Note that its density function f(ε) is directly proportional
to our innovation density p(u), as shown by the following relation:

f(ε) = p(u)
¯̄
¯̄du
dε

¯̄
¯̄ = g(εTε).

De…ning the transformed random variable z ´ τ (εTε) ´ τ(v), let its density function be denoted by
γ(z).

The construction of the estimator described below is motivated by the fact that we can derive
a mathematical relationship between the univariate density γ (z) and the multivariate density p(u),

so that a nonparametric estimate of the latter can be derived from a nonparametric estimate of the
former. The following relationships will be useful to keep in mind when considering the computation
of the estimator described below. We begin by considering the transformation z = τ(εTε). We are
particularly interested in deriving an expression for its density γ(z) and characterizing the relationship
between γ(z) and f (ε) (and hence between γ (z) and p(u)). Suppose that the m-vectors εt are i.i.d.
from the density f (ε) = g(εTε) ´ g(v) where v = εTε. From Muirhead (1982), the density of v,
which we shall denote h(v), is

h(v) = cmvm/2¡1g(v),

where cm = πm/2/¡(m/2). By Theorem 2.1.2 of Casella and Berger (1990) we have

γ(z) = h(τ¡1(z)) ¢
¯̄
¯̄∂τ¡1(z)

∂z

¯̄
¯̄ = cm

£
τ¡1(z)

¤m/2¡1 g(τ¡1(z)) ¢ Jτ(z),

where Jτ(z) = j∂τ¡1(z)/∂zj. Thus, g(v) = c¡1m J¡1τ fτ (v)g v1¡m/2γ fτ(v)g . This gives us our desired
expression for g(v) - and hence for f(ε) and p(u) - in terms of γ (z).

The formula for an adaptive estimator given in (5) above presupposed the existence of consistent
score and information estimators bϕt and bIn. With the notation developed in the preceding section, we
can now provide procedures for computing these consistent nonparametric estimates. In particular,

we show how we can use direct kernel estimates of γ(z) to indirectly obtain consistent estimates of
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the score and information of p. This construction is due to Hodgson, Linton, and Vorkink (2002),
following Bickel (1982), and is justi…ed theoretically in those papers.

Our algorithm for estimating ϕ and I proceeds according to the following steps:

1. First obtain bθ and de…ne the residuals fbutgn
t=1 and the standardized residuals fbεtgn

t=1, where

bεt = b§¡1/2but, b§ = bc¡1b§u, b§u = n¡1
Pn

t=1 butbuT
t , and bc =

h
det b§u

i1/m
. Then compute the

transformed sequence fbztgn
t=1, where bzt = τ(bvt) with bvt = bεT

t bεt.

2. Denoting by Khn (¢) a kernel with bandwidth hn, form the following estimates of the density of
bzt and its …rst derivative:

bγt(z) =
1

n ¡ 1

nX

s=1
s 6=t

Khn (z ¡ bzs) ; bγ0t(z) =
1

n ¡ 1

nX

s=1
s6=t

K0
hn
(z ¡ bzs).

3. Introduce the following trimming conditions: (i) bγt(bzt) ¸ dn; (ii) jbztj · en; (iii) jλ(bzt)j · bn;
(iv) jρ1/2(bzt)bγ0t(bzt)j · cnbγt(bzt), where ρ(z) = vτ 0(v)J¡1τ (z) [recall that v = τ¡1(z)] and λ(z) =
(d/dz)¡1ρ1/2(z).5 Then estimate the score and information of p(u) as follows:

bϕt(but) =

8
<
:

b§¡1/2bεt

h
s(bvt) + τ 0(bvt) γ̂0t

γ̂t
(bzt)

i
if (i)¡ (iv) all hold

0 otherwise,

where s(v) = (1¡ m/2)v¡1 ¡ J0τ
Jτ

fτ (v)g τ 0(v), and

bp =
1
n

nX

t=1

bϕt(but)bϕt(but)T .

4. Then de…ne the score and information estimators for the model as

b¢n(bθ) = ¡δn

nX

t=1

w0
tbϕt(but) ; bIn(bθ) = δn

nX

t=1

wT
t
bpwtδn. (6)

5These trimming conditions ensure consistency of our score estimator when a Gaussian kernel is being used, i.e.

when Khn is a Gaussian kernel. For other kernels often employed in the literature (e.g. Schick’s (1987) logistic kernel

and the bi-quartic kernel used in the applications reported below), the necessary trimming conditions, if they di¤ered
at all from these, would be less stringent, so that these conditions will still be su¢cient for consistency but may not

be necessary. Simulation work reported by Hsieh and Manski (1987) and Hodgson (1998) …nds that, for a Gaussian

kernel, the adaptive point estimate is not very sensitive to variation in the value of the trimming parameters, and that

good results are obtained in practice when we trim as little as 1% of the observations.
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We can state the following Proposition, which is a straightforward extension of Theorem 1 of
Hodgson, Linton, and Vorkink (2002) to our model.

Proposition 1: Suppose that p is …nite and positive de…nite; that
R 1
0 vm/2s(v)2g(v)dv < 1; that

the error distribution is absolutely continuous with respect to Lebesgue measure with Lebesgue density
p(u), that the regressors xt are strictly exogenous, and that the constants in (i)-(iv) satisfy cn ! 1,
en ! 1, bn ! 1, hn ! 0, dn ! 0, hncn ! 0, enh¡3n = o(n), and bnh¡3n = o(n). Then,

δ¡1n (eθ ¡ θ) ) MN(0, I¡1), (7)

i.e., the estimator eθ is adaptive.

Remarks. (a) The moment condition
R 1
0 vm/2s(v)2g(v)dv < 1 will depend on the transfor-

mation τ (¢) which we use and can be more or less restrictive for di¤erent selections of τ (¢). For

example, when the transformation is τ (v; ζ) =
¡
vζ ¡ 1

¢
/ζ, with either ζ = 0, ζ = 1, or ζ = 1/2m,

the condition implies that E[(εTε)m/2¡2] < 1. However, when ζ = m/2, there is no restriction on
the moments of u.

(b) Note that the information matrix estimator bIn(bθ) de…ned in (6) is a consistent estimator of
the asymptotic covariance matrix, so that bIn(bθ)¡I = op(1). This result is true even for cointegrated
models, in which case I is random. We can therefore use bIn(bθ) in the construction of t-ratios and
Wald statistics which will have respective standard normal and chi-squared asymptotic distributions.
Let θ` and eθ` be the `th elements of the θ and eθ vectors, respectively. Now suppose we wish to test
the null hypothesis that θ` = r, where r is some constant. Then we can compute the usual t-ratio,
as follows: ¡

δ¡1n
¢
``

³
eθ` ¡ r

´

r³
bI¡1n (bθ)

´
``

d! N (0, 1)

under the null, where
¡
δ¡1n

¢
`` and

³
bI¡1n (bθ)

´
`̀

are the `th elements along the diagonals of δ¡1n and
bI¡1n (bθ), respectively. If we want to test the joint hypothesis θ = r for the entire vector θ, where r is
now a known (m + k)¡vector of constants, we can compute the Wald statistic

h
δ¡1n

³
eθ ¡ r

´i0 bIn(bθ)
h
δ¡1n

³
eθ ¡ r

´i
d! χ2

m+k.
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Note that these convergence results will hold regardless of whether the model is stationary or coin-
tegrated.

(c) It is natural to ask how the present estimator will behave if the thick tails in the uncondi-
tional density of the errors are induced by some sort of conditional dependence, such as a multivariate
GARCH model. A related question has been addressed in Hodgson (2000) within the context of adap-
tively estimating univariate time series regression models, and the following conjectures are based on

Hodgson’s (2000) …ndings. It should be possible to extend these …ndings to obtain a useful robustness
result for our estimator in the case where the error process futg is uncorrelated but not necessarily
independent over time, and has an unconditional density which is elliptically symmetric. This would
happen, for example, if the errors followed a multivariate GARCH process, had a conditional density
which was elliptically symmetric, and had a conditional covariance matrix whose magnitude changed
over time but whose covariance structure remained unchanged. In any event, if the unconditional
density is elliptically symmetric, then the nonparametric score and information estimators bϕ and
b described above and used in our computation of the adaptive estimator should still consistently
estimate the score and information of the unconditional density of the errors. Our one-step estimator
will then have the same asymptotic distribution as the one-step iterative pseudo-MLE based on the
true unconditional density of the errors. When the regressors are strictly exogenous, as we have
assumed above, then the resulting estimator will have an asymptotic distribution which is identical
to that which it would have if the i.i.d. assumption on the errors was correct. In other words,
the distribution depends only on the unconditional density of the errors and is completely invariant
to the presence of conditional heteroskedasticity. Furthermore, the standard error estimates and
test statistics described in the preceding remark will be robust to the presence of conditional het-
eroskedasticity. When the strict exogeneity assumption on the regressors is relaxed, this robustness
property no longer holds. It is still true that our one-step semiparametric estimator will have the
same distribution as the one-step fully parametric estimator based on the true unconditional density,
but it will now be the case that the latter estimator’s asymptotic covariance matrix will have the
“sandwich” structure characteristic of pseudo-MLE’s in misspeci…ed models (cf. White (1982)). To
construct robust standard errors in this case, we would require a consistent nonparametric estimator
of the Hessian of the innovation density, since both the Hessian and OPG versions of the information
will enter the asymptotic covariance matrix. The derivation of such a consistent Hessian estimator
has not yet been considered in the literature and is a topic for future research.

(d) Some technical issues relating to the empirical implementation of our estimator and of a test
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for elliptical symmetry are discussed in the Appendix.

4 Forward Market Unbiasedness Tests

Like many economic theories, spot-futures parity does not purport a speci…c forecast horizon to which
the theory applies. We will use data sets of two di¤erent frequencies of spot and future exchange rate
in our empirical tests: 1) daily data ranging from January 1998 through December 2001; 2) weekly
data ranging from January 1993 through December 2001. We collect spot and futures rates for
three currencies (each expressed in terms of U.S dollars) for each of these frequencies: the Japanese
yen (JPY/USD), the British pound (GBP/USD), and the Canadian dollar (CAD/USD). We obtain
the data for both of the spot and futures rates from Bloomberg Inc. The futures rates provided
by Bloomberg are taken from futures quotes on the Chicago Mercantile Exchange and Bloomberg’s
spot rates are New York Composite quotes, or average rates across the large institutional currency
traders. We are careful to match the horizon of the futures with the sampling frequency of the data
so that our residuals should be uncorrelated through time, i.e.- the daily data include futures prices

with one-day horizons while the weekly data include futures prices with one-week horizons. We do
…nd a number of dates, for both the daily and the weekly data, where the futures price is missing
and as a result we delete these dates from the data set. Our …nal daily (weekly) frequency data set
has 806 (468) observations.

Tables I and II provide the summary statistics for the two data sets. We see that the Augmented
Dickey-Fuller (ADF) test fails to reject a unit root for all of the logged spot and forward rates.
However, when these rates are converted to percent changes for the stationary model, the ADF test
rejects the presence of a unit root for all of the series at a .05 level with most rejections at the
.01 level.6 Table III reports results of Box-Pierce tests applied to the OLS residuals from each of
our regressions. There is generally little evidence of serial correlation, with the exception of the
levels regression for GBP with weekly data. Multivariate distributional tests, as applied to the OLS
residuals, are reported in Table IV. The Beran test statistic, Sn, reported in Panel B, sets k = l = 7,
with sensitivity analysis on these choices …nding that the statistic varies little for small changes in
these values. The Mardia (1970) kurtosis test …nds evidence of signi…cant excess kurtosis in all series,
whereas the Beran (1979) statistic does not lead to rejections of the null of elliptical symmetry at the

6We repeated these tests using an adaptive unit root test developed by Beelders (1998) and came to identical
conclusions.

14



5% level for any of the series (although rejections at the 10% level would occur for the daily data).
Tables V and VI provide the estimation results, for the levels and di¤erences regressions, re-

spectively, while Wald statistics of the unbiasedness null hypothesis as stated in (1a) and (3) are
reported in Table VII. We note that the adaptive estimates are computed using a Gaussian kernel
with Schuster’s (1985) correction and the Box-Cox transformation z = τ (v) =

¡
vζ ¡ 1

¢
/ζ, with

ζ = 1/2m.7

4.1 Cointegrated Model: Results

Our estimates of the cointegrated model and associated unbiasedness test statistics are reported
in Table V, and in the second half of Table VII, respectively. Before analyzing our results, we will
consider some of the previous evidence that has been obtained in recent years, highlighting in addition
the evolution of the econometric methodology in this area. Note that all exchange rates are assumed
to be taken with respect to the US dollar, unless stated otherwise.

Two studies completed shortly after the introduction of the concept of cointegration to econome-
tricians are Baillie and Bollerslev (1989) and Hakkio and Rush (1989). The former study uses daily
data for the U.K., Germany, Japan, France, Italy, Switzerland, and Canada for the period 1980-1985,
whereas the latter considers the monthly exchange rates of the U.K and Germany for 1975-86. Both
consider 30-day forward rates and estimate the levels cointegrating regression by OLS, but, due the

lack of availability of distribution theory for cointegration estimators at the time, neither compute
standard errors or formally test the unbiasedness hypothesis. Their point estimates are fairly close
to those suggested by the hypothesis, however, except that Baillie and Bollerslev (1989) …nd in-
tercept and slope estimates for Japan to be -0.83 and 0.85, respectively. Barnhart and Szakmary
(1991) exploit the e¢ciency gains in estimation that may be available in modelling cross-currency
correlations by using a seemingly unrelated regression estimator in a system of four currencies (U.K.,
Germany, Japan, Canada), using monthly data and 30-day forward rates for 1974-88. They accept
the unbiasedness hypothesis for all four currencies.

The estimator developed in the present paper combines Barnhart and Szakmary’s (1991) systems
approach with the robust and semiparametric estimators developed in a number of studies in the late
90’s to address the issue of non-normailty in exchange rate data. Phillips, MacFarland, and McMahon
(1996) and Phillips and MacFarland (1997) apply the robust fully modi…ed least absolute deviations

7See Hodgson, Linton, and Vorkink (2002) for a motivation for the choice of the transformation function.
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estimator (FM-LAD) of Phillips (1995) to study, in the …rst case, the daily exchange rates and one-
month forward rates of Belgium, France, Italy, and U.S.A. (vis-à-vis the U.K.) for 1922-25 and, in
the second case, the Australian dollar for 1984-91, considering both 30- and 90-day forward rates. In
both papers, comparison is made of the inferences obtained using FM-LAD as opposed to the non-
robust (to non-normality) FM-OLS estimator of Phillips and Hansen (1990). Phillips, MacFarland,
and McMahon (1996) strongly reject the unbiasedness hypothesis for all countries except the U.S.,

regardless of estimation methodology, whereas Phillips and MacFarland (1997) accpet the hypothesis
using FM-OLS but strongly reject it with FM-LAD. The studies of Hodgson (1998a,1999) apply the
fully e¢cient semiparametric adaptive estimators developed in Hodgson (1998a,b) for cointegrating
regressions and error correction models, respectively, using daily data and 3-month forward rates
for the Canadian dollar for 1990-93. Results using the semiparametric estimators are compared
with those obtained using FM-OLS and Johansen’s (1988) error correction model estimator, and are
generally found to lend stronger support to the unbiasedness hypothesis.

Note that none of the estimators used in these four latter studies exploit cross-currency depen-
dencies in the manner of a Gaussian SUR estimator, whereas the present paper does so while still
attempting to account optimally for the possible presence of non-normality. In addition, we depart
from the papers listed above in using a more recent data set and in considering much shorter for-
ward maturities. As can be seen from Tables V and VII, we generally obtain very strong support
for the unbiasedness hypothesis, regardless of currency, estimator, forward horizon, or frequency of
observation. This is broadly consistent with the exisiting literature, although more unambiguously
supportive of the hypothesis than much of it.

4.2 Stationary Model: Results

The existing literature analyzing this model is much vaster and stretches back farther in time than
the corresponding literature for the cointegrated model. We will therefore not attempt anything even
resembling an overview of the literature (for which the reader is referred to, for example, Baillie and
McMahon (1989) or Engel (1996)), but will merely reference a small handful of representative papers
in order to highlight the contributions of the present one.

A number of studies have proceeded using "overlapping" data - i.e. data for which the frequency
of observation is higher than the length of the futures contract (for example, the use of weekly data
with a 30-day forward rate). This practice introduces a moving average autocorrelation structure to
the regression disturbances in equation (1), which complicates the estimation theory. In our data,
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we have matched the forward horizon with the frequency of observation, so that the disturbances
should be uncorrelated, which simpli…es the econometric analysis and allows the application of the
estimator developed in this paper. We proceed therefore to …rst discuss our results within the
context of existing studies that use non-overlapping data. We then brie‡y discuss the possibilities
of extending our analysis to allow for overlapping data, and consider some further extensions of our
analysis in the light of some recent developments in the empirical literature.

Among the many papers that estimate (1) using non-overlapping data, we will reference here
Bilson (1981), Fama (1984), and Barnhart and Szakmary (1991) as representative examples. Working
with monthly data and 30-day forward rates for a collection of nine major OECD currencies over
the period 1974-80, Bilson (1981), in estimating (1) by OLS, …nds point estimates far from those
predicted by the unbiasedness hypothesis, with estimates of the slope coe¢cients β generally being
well below one, but fails to reject the hypothesis for most countries due to high standard errors. He
subsequently groups the nine currencies into a system, which is estimated using the more e¢cient
SUR-GLS estimator introduced by Zellner (1962), and obtains much stronger rejections of the null.
Fama (1984), using a similar data set for nine countries for 1973-82, also compares OLS and SUR
estimates, and although the latter produce substantially smaller standard errors, both estimators
generally lead to rejections of the null, again due to slope estimates well below one. Barnhart and
Szakmary (1991) obtain similar results using an SUR estimator and the data set described above. In
fact, it has become something of a ”stylized fact” in the literature that slope estimates are generally
found to be less than one, and, in many cases, signi…cantly negative.

As described above, we bring new evidence to bear based on the recent period covered by our
data and the shorter forecast horizon. In addition, our estimator builds on the intuition of the
aforementioned papers in increasing e¢ciency of estimation by modelling the currencies in a system,
while allowing nonparametrically for the possible presence of non-normality in the data. Our results
for the estimation of (1) are presented in Table VI and in the …rst two panels of Table VII, where we
compare the results obtained using OLS and the semiparametric adaptive estimator developed here.
Regarding the basic inference as reported in Table VII, we can see that the null hypothesis is actually
accepted for both estimators with daily data, and is rejected with weekly data. Nevertheless, a look
at the point estimates in table VI reveals that the acceptance is due mainly to the wildly inaccurate
point estimates, somewhat less imprecise for the adaptive estimator. When moving from OLS to the
adaptive estimates, there are huge changes in the slope estimates, from well below zero to well above
unity. In the weekly data, the adaptive estimates are substantially more precise than OLS, judging
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by the standard errors, but both estimates yield slope estimates that are signi…cantly less than one,
and even, for certain currencies, signi…canlty negative. At least for the weekly data, our results are
consistent with previous studies.

As mentioned above, several studies work with overlapping data. Although our methodology can-
not be directly applied to such a situation, a brief consideration of previous econometric approaches
may suggest extensions of our methodology that could lead to e¢ciency improvements for these mod-

els. Beginning with the paper of Hansen and Hodrick (1980), several investigators have modelled
spot and forward rates for individual currencies as bivariate vector autoregressions (VAR’s), which
are then estimated by Gaussian MLE, possibly under parameter restrictions, from which inferences
can be made regarding the unbiasedness hypothesis (see also, for example, Hakkio (1981) and Bail-
lie, Lippens, and McMahon (1983)). Although questions of parameterization would probably forbid
the inculsion of several currencies into a large joint VAR, there is no reason, in principle, why the
individual-country bivariate VAR could not be estimated adaptively or semiparametrically e¢ciently,
using an extension of the procedures used in this paper.

A …nal possibility for extensions would be in the area of fractionally integrated models of the
forward premium. Baillie and Bollerslev (1994) compute Gaussian ML estimates of fractionally
integrated ARFIMA models, …nding evidence of fractional integration in the forward premium in a
number of major currencies. Maynard and Phillips (2001) obtain similar results, and investigate their
consequences for the estimation of models such as that of equation (1). As a suggestion for future
work, it may be worth investigating the possiblity of e¢ciency gains in ARFIMA models through
the speci…cation of joint likelihoods for several currencies, and/or the speci…cation of semiparametric
likelihoods and the derivation of semiparametric e¢ciency bounds.

5 Appendix - Some Technical Issues

We discuss here some issues that arise in the implementation of our estimator. Subsection 1 describes
Schuster’s correction, a modi…cation of our basic estimator which is undertaken to correct for the
poor properties of the nonparametric density estimator in the neighborhood of the origin which is due
to the fact that we do not directly estimate the density of the innovations ut but rather estimate the
density of a transformation zt whose support is only on the positive portion of the real line (see Stute
and Werner (1991), for a discussion of this problem, known as the “volcano e¤ect”). In subsection
2, we discuss the issue of bandwidth selection, in subsections 3 and 4 we discuss issues arising in the
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implementation of a test for elliptical symmetry due to Beran (1979), while subsection 5 considers a
method for correcting bias in our nonparametric information matrix estimator.

5.1 Schuster’s correction

The construction of bϕ imposing elliptical symmetry uses one dimensional kernel estimates of the
transformed variable z. For several transformations z = τ

¡
εTε

¢
, the support will have the restriction

z ¸ 0. This additional information is not incorporated in the standard Parzen-Rosenblatt kernel
estimator, fn(z) = n¡1h¡1n

Pn
i=1 K((z ¡ zi)/hn), which generates a downward bias in the density

estimate at this boundary. For most standard choice of symmetric kernel, the density estimator fn(z)
typically performs poorly on the right neighborhood of zero. This bias arises because for points zi in
the right neighborhood of 0, the contribution of zi given by n¡1h¡1n K((z ¡ zi)/hn) to fn(z) extends
to points z · 0 where f (z) = 0. A similar bias arise in the multivariate density estimates which
imposes the elliptical symmetry restriction. Ignoring the additional information of the restricted
support of the transformed variable generates a similar downward bias around the mean. This bias
creates a volcano like contour in the bivariate density estimate. The over‡ow in weights beyond the
lower support of 0 can be corrected by using an estimator which incorporates this additional support
constraint information into fn(x).

Schuster (1985) o¤ers a correction that incorporates this over‡ow to the region z < c, for …nite
c,back into the region z ¸ c by adding a mirror image term n¡1h¡1n K((z¡2c+zi)/hn) to n¡1h¡1n K((z¡
zi)/hn). The resulting estimator for z ¸ c is given by

efn(z) =
1

nhn

nX

i=1

·
K

µ
z ¡ zi

hn

¶
+K

µ
z ¡ 2c+ zi

hn

¶¸
.

In our case, c = 0. Schuster (1985) also proves consistency and asymptotic normality results for this
estimator.

5.2 Bandwidth Selection

The smoothing parameter used in the kernel estimation is chosen in two ways. The …rst involves
the standard approach for density estimation suggested in Silverman (1986). We shall compute
the Silverman (1986) rule-of-thumb (ROT) bandwidth for estimation of the density γ (z) of the
transformed random variable z = τ

¡
εTε

¢
. This bandwidth is optimal in terms of minimizing the

weighted (using a χ2
p density) mean integrated square error (MISE) of the density estimate if the
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underlying density is normal. Of course, this density is unknown, but the ROT provides an easy-
to-compute benchmark. The ROT bandwidth will depend on both the transformation used and the
kernel.

The scoring equation used in our procedure requires that we estimate the ratio γ0/γ of the
transformed variable z. The kernel estimate of the derivative of the density bγ0 in the numerator
will have a convergence rate which is slower compared to that of the density estimate bγ in the

denominator. This slower convergence rate is likely to dominate in the estimate of this ratio. The
second approach in parameterizing hopt involves calculating the optimal smoothing parameter that
minimizes the approximation of the mean integrated squared error to the kernel estimate of the
derivative of the density γ0(z). This alternative criterion is appropriate given that the slower rate of
convergence in the derivative estimate is likely to dominate that of the density estimate.

5.3 Test for elliptical symmetry

In this section, we describe a test for elliptical symmetry developed by Beran (1979) and discuss
its implementation. Suppose we have a series of standardized regression residuals bεt = b§¡1/2but for
t = 1, . . . , n, where but are OLS residuals and b§ is a consistent estimator of §. These residuals will
be used in the construction of a test of the null hypothesis that the true underlying innovations

fεtg are i.i.d. draws from a spherically symmetric density. The test utilizes a couple of distinctive
features of spherically symmetric random variables. The …rst is that the standardized random variable
εt/ kεtk is uniformly distributed on the m¡ 1-dimensional unit hypersphere. The second is that this
standardized random vector, which we refer to as the “direction” of εt, is independent of the vector’s
“length”, viz. kεtk .

We now describe the construction of the test, provide some intuition as to how it incorporates the
aforementioned characteristics, and then state the test’s asymptotic distribution under the null. We
begin by ranking the distances fkbεtkgn

t=1 and dividing these ranks by n+1. Let fRtgn
t=1 denote these

ranks. Note that the directional vector ε/kεk can be represented in terms of its polar coordinates
¥ =

¡
ξ1, . . . , ξm¡1

¢
as follows:

ε
kεk =

¡
cos (ξ1) , sin (ξ1)cos (ξ2) , . . . , sin (ξ1) sin (ξ2) , . . . , sin

¡
ξm¡1

¢¢
.

De…ne the coordinates of bεt/kbεtk by ¥t. Let fak : k ¸ 1g be the family of functions orthonormal
with respect to the Lebesgue measure on [0, 1] and orthogonal to the constant function on [0, 1] .
Furthermore, let fb` : ` ¸ 1g denote another family of orthonormal functions with respect to the
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uniform measure on [0,π]p¡2 £ [0, 2π) and orthogonal to the constant function on this domain [we
use Legendre’s polynomials described below]. Beran (1979) proposed a statistic of the form

Sn =
KnX

k=1

LnX

`=1

"
1p
n

nX

t=1

ak (Rt)bm (¥t)

#2

.

If the innovations fεtg have a spherically symmetric distribution, then Sn should be close to zero;
otherwise, it should be far from zero. Using the fact that, under the null, Rt and¥t both have uniform
distributions, it follows from our assumptions on fakg and fb`g that E [ak] = E [b`] = 0 for all k, `.
The independence of Rt and ¥t under the null furthermore implies that E [ak (Rt) bm (¥t)] = 0 for
all k, `. The following proposition gives the asymptotic distribution of Sn.

Proposition 1 (Beran (1979)) . Suppose that the functions fak : k ¸ 1g and fb` : ` ¸ 1g are dif-
ferentiable and that:

1. lim
n!1

Kn= lim
n!1

Ln= 1

2. lim
n!1

n¡1/2K¡1/2
n L1/2n

PKn
k=1 ka0kk= lim

n!1
n¡1/2K 1/2

n L¡1/2n
PLn

`=1 kb0`k= 0

3. lim
n!1

1
nMnKn= 0 .

Then, the null limiting distribution of (2MnKn)¡
1
2 [Sn ¡ MnKn] as n ! 1 is N(0, 1).

This test of Beran (1979) is based on Fourier series expansion density estimators. Considering
the fact that our estimation routine employs kernel -based density estimation, it would seem natural
to employ a kernel-based test for elliptical symmetry. We are not immediately aware of the existence
of such a test, although it would presumably be feasible to develop one, perhaps employing results
on kernel-based goodness-of-…t tests for density functions as developed by Fan (1994).

5.4 Orthonormal Polynomials

The orthonormal polynomials used for our set of functions arise from solutions to what is called
Legendre’s di¤erential equations of the form,

(1 ¡ x2)y00 ¡ 2xy0 + n(n+ 1)y = 0.
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The general solution is given by
y = c1Pn(x) + c2Qn(x),

where the polynomials used are given by

Pn(x) =
1

2nn!
dn

dxn (x
2 ¡ 1)n

where x 2 [¡1, 1]. These polynomials are suitably transformed to ensure orthogonality in the appro-
priate domain speci…ed by the test statistics.

The family of di¤erentiable orthonormal polynomials fa(z)k : k ¸ 1g on the [0, 1] domain for z
are as follow:

a(z)1 =
p
3(2z ¡ 1)

a(z)2 =
p
5(6z2 ¡ 6z + 1)

a(z)3 =
p
7 (2z ¡ 1)

¡
10z2 ¡ 10z +1

¢

a(z)4 =
p
9(70z4 ¡ 140z3 + 90z2 ¡ 20z + 1)

a(z)5 =
r

11
64

¡
63 (2z ¡ 1)5 ¡ 70 (2z ¡ 1)3+ 15(2z ¡ 1)

¢

a(z)6 =
p
13
16

¡
231 (2z ¡ 1)6 ¡ 315 (2z ¡ 1)4+ 105 (2z ¡ 1)2 ¡ 5

¢

a(z)7 =
p
15
16

¡
429 (2z ¡ 1)7 ¡ 693 (2z ¡ 1)5+ 315 (2z ¡ 1)3 ¡ 35 (2z ¡ 1)

¢
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The family of orthonormal polynomials fb (ξ)m : m ¸ 1g are as follow:

b (ξ)1 =
r

3
λπ

(
2ξ
λπ

¡ 1)

b (ξ)2 =
r

5
λπ

Ã
6

µ
ξ
λπ

¶2

¡ 6ξ
λπ

+1

!

b (ξ)3 =
r

7
λπ

µ
2ξ
λπ

¡ 1
¶ Ã

10
µ

ξ
λπ

¶2

¡ 10ξ
λπ

+ 1

!

b (ξ)4 =
r

9
λπ

Ã
70

µ
ξ
λπ

¶4

¡ 140
µ

ξ
λπ

¶3

+ 90
µ

ξ
λπ

¶2

¡ 20
µ

ξ
λπ

¶
+ 1

!

b (ξ)5 =
r

11
64λπ

Ã
63

µ
2ξ
λπ

¡ 1
¶5

¡ 70
µ
2ξ
λπ

¡ 1
¶3

+ 15
µ
2ξ
λπ

¡ 1
¶!

b (ξ)6 =
r

13
256λπ

Ã
231

µ
2ξ
λπ

¡ 1
¶6

¡ 315
µ
2ξ
λπ

¡ 1
¶4

+ 105
µ
2ξ
λπ

¡ 1
¶2

¡ 5

!

b (ξ)7 =
r

15
256λπ

Ã
429

µ
2ξ
λπ

¡ 1
¶7

¡ 693
µ
2ξ
λπ

¡ 1
¶5

+ 315
µ
2ξ
λπ

¡ 1
¶3

¡ 35
µ
2ξ
λπ

¡ 1
¶!

where λ = 1 for the range ξ 2 [0, π] and λ = 2 for the range θ 2 [0, 2π].

5.5 Bias Correction for Information Matrix

Our estimator of the information matrix, although consistent, has a …nite sample upwards bias that
therefore biases downwards our standard error estimates. In our empirical application, we employ
a simple degrees of freedom correction. Write bγ0t =

P
s ω0nts and bγt =

P
s ωnts for some weights

ω0nts and ωnts implicitly de…ned in our estimation algorithm. We replace
¡
bγ0t

¢2 and (bγt)
2 in (6) by¡

bγ0t
¢2¡P

s (ω
0
nts)

2 and (bγt)
2¡P

s (ωnts)2 respectively. The correction terms
P

s (ω
0
nts)

2 and
P

s (ωnts)2

consistently estimate the degrees of freedom bias terms (see Linton (1995)).
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Table I
Summary Statistics Cointegrated Model

Below are summary statistics of the logged spot and forward rates used in the empirical analysis.

ADF stands for Augmented Dicky-Fuller unit root test where 20 lagged di¤erence terms and a constant

are included in the test. Critical values for the ADF statistics on the daily data are -3.4395, -2.8648,

and -2.5685 at the 1%, 5%, and 10% respectively. Critical values for the ADF statistics on the weekly

data are -3.9817, -3.4213, and -3.1331 at the 1%, 5%, and 10% respectively.

Variable Mean Std. Dev. min max ADF

Daily (n = 806)

st

JPY/USD 4.762 0.086 4.621 4.986 -1.348

GBP/USD 0.433 0.061 0.317 .0537 -0.892

CAD/USD 0.408 0.028 .0344 0.472 -1.322
ft

JPY/USD 0.408 0.028 0.345 0.473 -0.902
GBP/USD 0.433 0.061 0.317 0.537 -1.084

CAD/USD 0.408 0.028 0.345 0.473 -0.984
Weekly (n = 468)

st

JPY/USD 4.717 0.107 4.415 4.985 -2.514

GBP/USD 0.443 0.050 0.321 0.536 -1.351
CAD/USD 0.350 0.059 0.218 0.478 -2.316

ft

JPY/USD 4.716 0.107 4.411 4.986 -2.512

GBP/USD 0.443 0.050 0.321 0.535 -1.458

CAD/USD 0.350 0.059 0.219 0.478 -2.738
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Table II
Summary Statistics Stationary Model

Below are summary statistics of the logged spot and forward rates used in the empirical analysis.

ADF stands for Augmented Dicky-Fuller unit root test where 20 lagged di¤erence terms and a constant

are included in the test. See the note to Table I for critical values for the ADF statistics on the daily

and weekly data.

Variable Mean Std. Dev. min max ADF

Daily (n = 806)

st+1 ¡ st

JPY/USD 0.000 0.008 -0.069 0.033 -7.266

GBP/USD 0.000 0.005 -0.016 0.019 -7.671
CAD/USD 0.000 0.003 -0.016 0.011 -7.612

ft ¡ st

JPY/USD 0.000 0.000 -0.001 0.000 -5.669
GBP/USD 0.000 0.000 -0.001 0.001 -3.682

CAD/USD 0.000 0.000 -0.001 0.001 -4.629
Weekly (n = 468)

st+1 ¡ st

JPY/USD 0.000 0.017 -0.150 0.059 -5.597

GBP/USD 0.000 0.012 -0.035 0.039 -5.576
CAD/USD 0.001 0.007 -0.027 0.021 -10.186

ft ¡ st

JPY/USD 0.000 0.001 -0.001 0.001 -3.861

GBP/USD 0.000 0.001 -0.013 0.023 -7.869

CAD/USD 0.000 0.001 -0.007 0.022 -3.856
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Table III
Properties of Model Residuals

The test statistics below are Box-Pierce tests of residual serial

correlation. P-values are in parentheses and ¤indicates a p -value

less than .001.

Panel A: Cointegrated Model

Daily Data JPY/USD GBP/USD CAD/USD
Box-Pierce (q=1) 1.58(0.21) 0.72(0.40) 0.93(0.34)

Box-Pierce (q=5) 3.52(0.62) 3.44(0.63) 4.54(0.48)
Box-Pierce (q=10) 11.76(0.30) 7.18(0.71) 5.61(0.85)

Box-Pierce (q=20) 28.62(0.10) 14.25(0.82) 14.79(0.79)

Weekly Data
Box-Pierce (q=1) 0.00(0.97) 20.43(0.00¤) 2.27(0.13)

Box-Pierce (q=5) 8.03(0.15) 28.71(0.00¤) 7.41(0.19)
Box-Pierce (q=10) 9.96(0.44) 36.65(0.00¤) 9.71(0.47)

Box-Pierce (q=20) 25.08(0.20) 57.85(0.00¤) 19.34(0.50)

Panel B: Stationary Model

Daily Data
Box-Pierce (q=1) 1.60(0.21) 0.85(0.36) 1.16(0.28)

Box-Pierce (q=5) 3.49(0.63) 3.88(0.57) 4.96(0.42)
Box-Pierce (q=10) 10.94(0.36) 7.52(0.68) 6.16(0.80)

Box-Pierce (q=20) 29.53(0.09) 15.11(0.77) 15.42(0.75)

Weekly Data
Box-Pierce (q=1) 1.14(0.29) 0.00(0.96) 6.73(0.02)

Box-Pierce (q=5) 7.13(0.21) 4.72(0.45) 12.66(0.03)
Box-Pierce (q=10) 8.65(0.57) 7.60(0.67) 14.34(0.16)

Box-Pierce (q=20) 22.82(0.30) 24.78(0.21) 23.91(0.25)
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Table IV
Multivariate Tests of Normality and Elliptical Symmetry

The test statistics below are Mardia’s (1970) multivariate kurtosis measure and Beran’s (1979)

elliptical symmetry measure, Sn. Tests are constructed using residuals from OLS estimation of

stated model. P-values are in parentheses and ¤indicates a p-value less than .001.

Panel A: Multivariate Kurtosis Test
Test Statistic

Stationary Model, Daily Data 34.268(0.00¤)
Cointegrated Model, Daily Data 35.172(0.00¤)

Stationary Model, Weekly Data 27.340(0.00¤)
Cointegrated Model, Weekly Data 25.904(0.00¤)

Panel B: Elliptical Symmetric Test (Sn)
Test Statistic

Stationary Model, Daily Data 3.275(0.07)

Cointegrated Model, Daily Data 3.634(0.06)
Stationary Model, Weekly Data 0.901(0.31)

Cointegrated Model, Weekly Data 1.228(0.25)
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Table V
Results of Spot-Futures Estimation

Cointegrated Model
st+1 = α+ βft + ut+1

Panel A: Daily Data, OLS Estimates
α β

Exchange Rate Estimate Std. Error Estimate Std. Error

JPY/USD 0.0172 0.0154 0.9964 0.0032
GBP/USD 0.0022 0.0012 0.9950 0.0028

CAD/USD 0.0024 0.0018 0.9942 0.0043

Panel B: Daily Data, Adaptive Estimates

JPY/USD 0.0146 0.0147 0.9971 0.0031

GBP/USD 0.0002 0.0009 0.9989 0.0021
CAD/USD 0.0017 0.0018 0.9961 0.0044

Panel C: Weekly Data, OLS Estimates

JPY/USD 0.0613 0.0294 0.9872 0.0062
GBP/USD 0.0041 0.0035 0.9921 0.0074

CAD/USD 0.0001 0.0013 1.0001 0.0038

Panel D: Weekly Data, Adaptive Estimates

JPY/USD 0.0093 0.0272 0.9986 0.0057

GBP/USD 0.0022 0.0029 0.9945 0.0063
CAD/USD 0.0001 0.0012 1.0000 0.0034
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Table VI
Results of Spot-Futures Estimation

Stationary Model
st+1 ¡ st = α+ β(ft ¡ st) + ut+1

Panel A: Daily Data, OLS Estimates
α β

Exchange Rate Estimate Std. Error Estimate Std. Error

JPY/USD -0.0007 0.0005 -3.4552 1.8148
GBP/USD -0.0001 0.0002 -0.2931 2.3153

CAD/USD 0.0000 0.0001 -2.0860 2.6759

Panel B: Daily Data, Adaptive Estimates

JPY/USD 0.0002 0.0005 0.1558 1.7122

GBP/USD -0.0002 0.0002 1.7852 1.9943
CAD/USD 0.0002 0.0001 1.6924 2.8459

Panel C: Weekly Data, OLS Estimates

JPY/USD -0.0004 0.0008 -0.2680 0.3309
GBP/USD -0.0001 0.0005 -0.5446 0.1682

CAD/USD 0.0005 0.0003 0.1362 0.1897

Panel D: Weekly Data, Adaptive Estimates

JPY/USD 0.0008 0.0003 -0.2376 0.1250

GBP/USD 0.0000 0.0004 -0.6187 0.1007
CAD/USD 0.0006 0.0002 0.1183 0.1236
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Table VII
Forward Rate Unbiased Tests
H0: αi = 0, βi = 1, i = 1, . . . ,m

Under the null, J is distributed asymptotically χ2
6. P-values are in

parentheses following the test statistics. ¤Indicates a p -value less

than .001.

J (p-value)

Stationary Model, Daily Returns
OLS 8.247(0.22)

Adaptive 5.946(0.43)

Stationary Model, Weekly Returns
OLS 117.864(0.00)

Adaptive 469.881(0.00)

Cointegrated Model, Daily Returns
OLS 6.916(0.33)

Adaptive 7.454(0.28)

Cointegrated Model, Weekly Returns
OLS 8.573(0.20)

Adaptive 15.007(0.02)
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Daily Log Spot Rates
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Figure 1: Daily Log Spot and Forward Rates
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Weekly Log Spot Rates
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Figure 2: Weekly Log Spot and Forward Rates
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